Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Hande Petek,^a Çiğdem Albayrak,^b Nazan Ocak Iskeleli,^a Erbil Ağar^b and Ismet Şenel^a*

^aDepartment of Physics, Arts and Sciences Faculty, Ondokuz Mayıs University, 55139 Samsun, Turkey, and ^bDepartment of Chemistry, Arts and Sciences Faculty, Ondokuz Mayıs University, 55139 Samsun, Turkey

Correspondence e-mail: hpetek@omu.edu.tr

Key indicators

Single-crystal X-ray study T = 100 KMean σ (C–C) = 0.002 Å R factor = 0.032 wR factor = 0.085 Data-to-parameter ratio = 9.0

For details of how these key indicators were automatically derived from the article, see http://iournals.jucr.org/e.

(E)-2-[(2-Morpholinoethylimino)methyl]phenol

The title compound, C13H18N2O2, exists in the enol-imine tautomeric form with a strong intramolecular O-H···N hydrogen bond $[O \cdot \cdot \cdot N = 2.5795 (18) \text{ Å}]$, and the morpholine ring adopts an almost perfect chair conformation.

Received 19 October 2005 Accepted 26 October 2005 Online 5 November 2005

Comment

Schiff bases are widely used as ligands in the field of coordination chemistry (Calligaris & Randaccio, 1987) and they are important in diverse areas of chemistry because of their biological activities (Lozier et al., 1975; Garnovskii et al., 1993; Costamagna et al., 1992; Walsh & Orme-Johnson, 1987). o-Hydroxy Schiff bases derived from the reaction of o-hydroxyaldehydes with aniline have been extensively examined (Stewart & Lingafelter, 1959; Calligaris et al., 1972; Maslen & Waters, 1975). N-Substituted o-hydroxyimines have been reported to display thermochromism and photochromism in the solid state by H-atom transfer from the hydroxy O atom to the N atom (Hadjoudis et al., 1987; Xu et al., 1994).

There are two types of intramolecular hydrogen bonds in Schiff bases, viz. keto-amine (N-H···O) and enol-imine $(N \cdots H - O)$ tautomeric forms. In the title compound, (I), it is seen that the enol-imine tautomer is favoured over the ketoamine tautomer. o-Hydroxy Schiff bases have been observed previously in the keto form (Hökelek et al., 2000; Koşar et al., 2004), in the enol form (Ünver et al., 2002; Odabaşoğlu et al., 2005) or in enol/keto mixtures (Nazır et al., 2000) by means of H-atom transfer.

The molecular structure of (I) is shown in Fig. 1. Selected bond lengths and angles are listed in Table 1. The C1-O1 and

Figure 1

© 2005 International Union of Crystallography A view of (I), showing 50% probability displacement ellipsoids. The dashed line indicates a hydrogen bond.

Printed in Great Britain - all rights reserved

C7–N1 bond lengths verify the enol-imine form of (I), and these distances are similar to other values reported in the literature [1.357 (2) and 1.287 (2) Å (Albayrak *et al.*, 2005); 1.346 (4) and 1.270 (5) Å (Sahin *et al.*, 2005)].

There is a strong intramolecular $O-H \cdots N$ hydrogen bond in (I) (Table 2), which is a common feature of *o*-hydroxysalicylidene systems (Filarowski *et al.*, 2003; Yıldız *et al.*, 1998).

The morpholine ring in (I) adopts an almost perfect chair conformation, with a total puckering amplitude of $Q_{\rm T} = 0.5747$ (15) Å (Cremer & Pople, 1975). The bond distances and angles in the morpholine rings are as expected.

Experimental

Compound (I) was prepared by refluxing a mixture of a solution containing salicylaldehyde (0.5 g 4.1 mmol) in ethanol (20 ml) and a solution containing 4-(2-aminoethyl)morpholine (0.53 g 4.1 mmol) in ethanol (20 ml). The reaction mixture was stirred for 1 h under reflux. The resulting yellow precipitate was filtered off and crystals of (I) suitable for X-ray analysis were obtained from ethyl acetate by slow evaporation (yield 93%, m.p. 318–319 K).

Crystal data

$C_{13}H_{18}N_2O_2$ $M_r = 234.29$ Orthorhombic, $P2_12_12_1$ $a = 5.8324 (4) \text{ Å}$ $b = 9.1911 (6) \text{ Å}$ $c = 23.042 (2) \text{ Å}$ $V = 1235.17 (17) \text{ Å}^3$ $Z = 4$ $D_x = 1.260 \text{ Mg m}^{-3}$	Mo $K\alpha$ radiation Cell parameters from 8146 reflections $\theta = 1.8-27.2^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 100 K Prism, yellow $0.60 \times 0.52 \times 0.42 \text{ mm}$
Data collection	
Stoe IPDS-II diffractometer ω scans Absorption correction: none 6052 measured reflections 1447 independent reflections 1358 reflections with $I > 2\sigma(I)$	$\begin{aligned} R_{\text{int}} &= 0.045\\ \theta_{\text{max}} &= 26.0^{\circ}\\ h &= -7 \rightarrow 7\\ k &= -11 \rightarrow 11\\ l &= -25 \rightarrow 28 \end{aligned}$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.085$ S = 1.12 1447 reflections 160 parameters H atoms treated by a mixture of independent and constrained refinement	$\begin{split} &w = 1/[\sigma^2(F_{\rm o}^{2}) + (0.0533P)^2 \\ &+ 0.0683P] \\ &where \ P = (F_{\rm o}^2 + 2F_{\rm c}^2)/3 \\ (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3} \\ {\rm Extinction \ correction: \ SHELXL97} \\ {\rm Extinction \ coefficient: \ 0.063 \ (6)} \end{split}$

Table 1

Selected geometric parameters	(Å,	°))
-------------------------------	-----	----	---

C1-O1	1.348 (2)	C10-N2	1.460 (2)
C7-N1	1.272 (2)	C11-O2	1.420 (2)
C8-N1	1.457 (2)	C12-N2	1.463 (2)
C9-N2	1.458 (2)	C13-O2	1.426 (2)
o			
O1 - C1 - C6	121.36 (14)	N2-C9-C8	110.83 (13)
N1-C7-C6	121.62 (15)	C7-N1-C8	118.41 (14)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1\cdots N1$	0.82	1.85	2.5795 (18)	148

In the absence of significant anomalous dispersion effects, 990 Friedel pairs were merged before the refinement, and the assignment of absolute configuration is arbitrary. All H atoms (except for H7) were positioned geometrically and treated using a riding model, fixing the aromatic C-H distances at 0.93 Å, the methylene C-H distances at 0.97 Å and the O-H distance at 0.82 Å [$U_{iso}(H) = 1.2U_{eq}(C)$ and $1.5U_{eq}(O)$]. Atom H7, attached to C7, was refined independently with an isotropic displacement parameter.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant F.279 of the University Research Fund).

References

- Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, 0423–0424.
- Calligaris, M., Nardin, G. & Randaccio, L. (1972). Coord. Chem. Rev. 7, 385–403.
- Calligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715–738. London: Pergamon.
- Costamagna, J., Vargas, J., Latorre, R., Alvarado, A. & Mena, G. (1992). Coord. Chem. Rev. 119, 67–68.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Filarowski, A., Koll, A. & Glowiaka, T. (2003). J. Mol. Struct. 644, 187-195.

Garnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.

- Hadjoudis, E., Vitterakis, M. & Maviridis, I. M. (1987). *Tetrahedron*, **43**, 1345–1360.
- Hökelek, T., Kılıç, Z., Işıklan, M. & Toy, M. (2000). J. Mol. Struct. 523, 61-69.
- Koşar, B., Büyükgüngör, O., Albayrak, Ç. & Odabaşoğlu, M. (2004). Acta Cryst. C60, 0458–0460.
- Lozier, R., Bogomolni, R. A. & Stoekenius, W. (1975). J. Biophys. 15, 955–962.
- Maslen, H. S. & Waters, T. N. (1975). Coord. Chem. Rev. 17, 137–176.
- Nazır, H., Yıldız, M., Yılmaz, H., Tahir, M. N. & Ülkü, D. (2000). J. Mol. Struct. 524, 241–250.
 Odabaşoğlu, M., Albayrak, Ç. & Büyükgüngör, O. (2005). Acta Cryst. E61,
- odabaşoglu, M., Albayrak, Ç. & Buyukgungor, O. (2005). Acta Cryst. E**01**, 0425–0426.
- Şahin, O., Büyükgüngör, O., Albayrak, Ç. & Odabaşoğlu, M. (2005). Acta Cryst. E61, o1288–o1290.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Stewart, J. M. & Lingafelter, E. C. (1959). Acta Cryst. 12, 842-845.
- Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany. Ünver, H., Yıldız, M., Zengin, D. M., Özbey, S. & Kendi, E. (2002). J. Chem. Crystallogr. 31, 211–216.
- Walsh, C. T. & Orme-Johnson, W. H. (1987). *Biochemistry*, **26**, 4901–4906.
- Xu, X., You, X., Sun, Z., Wang, X. & Liu, H. (1994). Acta Cryst. C50, 1169– 1171.
- Yıldız, M., Kılıç, Z. & Hökelek, T. (1998). J. Mol. Struct. 441, 1-10.